Some useful Gaussian and matrix equations

Carl Edward Rasmussen

June 23rd, 2016

Appendix: Some useful Gaussian identities

If x is multivariate Gaussian with mean μ and covariance matrix Σ

$$
p(\mathbf{x} ; \mu, \Sigma)=(2 \pi|\Sigma|)^{-D / 2} \exp \left(-(\mathbf{x}-\mu)^{\top} \Sigma^{-1}(\mathbf{x}-\mu) / 2\right)
$$

then

$$
\begin{aligned}
& \mathbb{E}[\mathbf{x}]=\mu \\
& \mathbb{V}[\mathbf{x}]=\mathbb{E}\left[(\mathbf{x}-\mathbb{E}[\mathbf{x}])^{2}\right]=\Sigma
\end{aligned}
$$

For any matrix A, if $\mathbf{z}=A \mathbf{x}$ then \mathbf{z} is Gaussian and

$$
\begin{aligned}
\mathbb{E}[\mathbf{z}] & =A \mu, \\
\mathbb{V}[\mathbf{z}] & =A \Sigma A^{\top} .
\end{aligned}
$$

Matrix and Gaussian identities cheat sheet

Matrix identities

- Matrix inversion lemma (Woodbury, Sherman \& Morrison formula)

$$
\left(Z+u W V^{\top}\right)^{-1}=Z^{-1}-Z^{-1} u\left(W^{-1}+V^{\top} Z^{-1} u\right)^{-1} V^{\top} Z^{-1}
$$

- A similar equation exists for determinants

$$
\left|Z+U W V^{\top}\right|=|Z||W|\left|W^{-1}+V^{\top} Z^{-1} u\right|
$$

The product of two Gaussian density functions

$$
\mathcal{N}(\mathbf{x} \mid \mathbf{a}, \mathcal{A}) \mathcal{N}\left(\mathrm{P}^{\top} \mathbf{x} \mid \mathbf{b}, \mathrm{B}\right)=z_{\mathrm{c}} \mathcal{N}(\mathbf{x} \mid \mathbf{c}, \mathrm{C})
$$

- is proportional to a Gaussian density function with covariance and mean

$$
C=\left(A^{-1}+P B^{-1} P^{\top}\right)^{-1} \quad c=C\left(A^{-1} \mathbf{a}+P B^{-1} \mathbf{b}\right)
$$

- and has a normalizing constant z_{c} that is Gaussian both in \mathbf{a} and in \mathbf{b}

$$
z_{c}=(2 \pi)^{-\frac{m}{2}}\left|B+\mathrm{P}^{\top} A P\right|^{-\frac{1}{2}} \exp \left(-\frac{1}{2}\left(\mathbf{b}-\mathrm{P}^{\top} \mathbf{a}\right)^{\top}\left(\mathrm{B}+\mathrm{P}^{\top} A P\right)^{-1}\left(\mathbf{b}-\mathrm{P}^{\top} \mathbf{a}\right)\right)
$$

